|
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' which makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as l-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary topological space, and Grothendieck's theory is loosely regarded as a generalization of classical topology. Under meager point-set hypotheses, namely sobriety, this is completely accurate—it is possible to recover a sober space from its associated site. However simple examples such as the indiscrete topological space show that not all topological spaces can be expressed using Grothendieck topologies. Conversely, there are Grothendieck topologies which do not come from topological spaces. == Introduction == (詳細はAndré Weil's famous Weil conjectures proposed that certain properties of equations with integral coefficients should be understood as geometric properties of the algebraic variety that they define. His conjectures postulated that there should be a cohomology theory of algebraic varieties which gave number-theoretic information about their defining equations. This cohomology theory was known as the "Weil cohomology", but using the tools he had available, Weil was unable to construct it. In the early 1960s, Alexander Grothendieck introduced étale maps into algebraic geometry as algebraic analogues of local analytic isomorphisms in analytic geometry. He used étale coverings to define an algebraic analogue of the fundamental group of a topological space. Soon Jean-Pierre Serre noticed that some properties of étale coverings mimicked those of open immersions, and that consequently it was possible to make constructions which imitated the cohomology functor ''H''1. Grothendieck saw that it would be possible to use Serre's idea to define a cohomology theory which he suspected would be the Weil cohomology. To define this cohomology theory, Grothendieck needed to replace the usual, topological notion of an open covering with one that would use étale coverings instead. Grothendieck also saw how to phrase the definition of covering abstractly; this is where the definition of a Grothendieck topology comes from. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Grothendieck topology」の詳細全文を読む スポンサード リンク
|